Performance Analysis
Approximate Cross-Validation for Structured Models William T. Stephenson
Many modern data analyses benefit from explicitly modeling dependence structure in data - such as measurements across time or space, ordered words in a sentence, or genes in a genome. A gold standard evaluation technique is structured cross-validation (CV), which leaves out some data subset (such as data within a time interval or data in a geographic region) in each fold. But CV here can be prohibitively slow due to the need to re-run already-expensive learning algorithms many times. Previous work has shown approximate cross-validation (ACV) methods provide a fast and provably accurate alternative in the setting of empirical risk minimization. But this existing ACV work is restricted to simpler models by the assumptions that (i) data across CV folds are independent and (ii) an exact initial model fit is available. In structured data analyses, both these assumptions are often untrue. In the present work, we address (i) by extending ACV to CV schemes with dependence structure between the folds. To address (ii), we verify - both theoretically and empirically - that ACV quality deteriorates smoothly with noise in the initial fit. We demonstrate the accuracy and computational benefits of our proposed methods on a diverse set of real-world applications.
Approximate Heavily-Constrained Learning with Lagrange Multiplier Models
In machine learning applications such as ranking fairness or fairness over intersectional groups, one often encounters optimization problems with extremely large numbers of constraints. In particular, with ranking fairness tasks, there may even be a variable number of constraints, e.g. one for each query in the training set. In these cases, the standard approach of optimizing a Lagrangian while maintaining one Lagrange multiplier per constraint may no longer be practical. Our proposal is to associate a feature vector with each constraint, and to learn a "multiplier model" that maps each such vector to the corresponding Lagrange multiplier. We prove optimality, approximate feasibility and generalization guarantees under assumptions on the flexibility of the multiplier model, and empirically demonstrate that our method is effective on real-world case studies.
MMSite: A Multi-modal Framework for the Identification of Active Sites in Proteins
The accurate identification of active sites in proteins is essential for the advancement of life sciences and pharmaceutical development, as these sites are of critical importance for enzyme activity and drug design. Recent advancements in protein language models (PLMs), trained on extensive datasets of amino acid sequences, have significantly improved our understanding of proteins. However, compared to the abundant protein sequence data, functional annotations, especially precise per-residue annotations, are scarce, which limits the performance of PLMs. On the other hand, textual descriptions of proteins, which could be annotated by human experts or a pretrained protein sequence-to-text model, provide meaningful context that could assist in the functional annotations, such as the localization of active sites. This motivates us to construct a ProTein-Attribute text Dataset (ProTAD), comprising over 570,000 pairs of protein sequences and multi-attribute textual descriptions.
Adaptive Important Region Selection with Reinforced Hierarchical Search for Dense Object Detection
Existing state-of-the-art dense object detection techniques tend to produce a large number of false positive detections on difficult images with complex scenes because they focus on ensuring a high recall. To improve the detection accuracy, we propose an Adaptive Important Region Selection (AIRS) framework guided by Evidential Q-learning coupled with a uniquely designed reward function. Inspired by human visual attention, our detection model conducts object search in a top-down, hierarchical fashion. It starts from the top of the hierarchy with the coarsest granularity and then identifies the potential patches likely to contain objects of interest. It then discards non-informative patches and progressively moves downward on the selected ones for a fine-grained search. The proposed evidential Q-learning systematically encodes epistemic uncertainty in its evidential-Q value to encourage the exploration of unknown patches, especially in the early phase of model training. In this way, the proposed model dynamically balances exploration-exploitation to cover both highly valuable and informative patches. Theoretical analysis and extensive experiments on multiple datasets demonstrate that our proposed framework outperforms the SOTA models.
Learning to Embed Distributions via Maximum Kernel Entropy
Empirical data can often be considered as samples from a set of probability distributions. Kernel methods have emerged as a natural approach for learning to classify these distributions. Although numerous kernels between distributions have been proposed, applying kernel methods to distribution regression tasks remains challenging, primarily because selecting a suitable kernel is not straightforward. Surprisingly, the question of learning a data-dependent distribution kernel has received little attention. In this paper, we propose a novel objective for the unsupervised learning of data-dependent distribution kernel, based on the principle of entropy maximization in the space of probability measure embeddings. We examine the theoretical properties of the latent embedding space induced by our objective, demonstrating that its geometric structure is well-suited for solving downstream discriminative tasks. Finally, we demonstrate the performance of the learned kernel across different modalities.
Classification Under Misspecification: Halfspaces, Generalized Linear Models, and Evolvability
In this paper, we revisit the problem of distribution-independently learning halfspaces under Massart noise with rate . Recent work [DGT19] resolved a longstanding problem in this model of efficiently learning to error + for any >0, by giving an improper learner that partitions space into poly(d, 1/) regions. Here we give a much simpler algorithm and settle a number of outstanding open questions: (1) We give the first proper learner for Massart halfspaces that achieves + .
From Finite to Countable-Armed Bandits
We consider a stochastic bandit problem with countably many arms that belong to a finite set of types, each characterized by a unique mean reward. In addition, there is a fixed distribution over types which sets the proportion of each type in the population of arms. The decision maker is oblivious to the type of any arm and to the aforementioned distribution over types, but perfectly knows the total number of types occurring in the population of arms. We propose a fully adaptive online learning algorithm that achieves O (log n) distribution-dependent expected cumulative regret after any number of plays n, and show that this order of regret is best possible. The analysis of our algorithm relies on newly discovered concentration and convergence properties of optimism-based policies like UCB in finite-armed bandit problems with zero gap, which may be of independent interest.
Trenton Chang 1 Lindsay Warrenburg
In many settings, machine learning models may be used to inform decisions that impact individuals or entities who interact with the model. Such entities, or agents, may game model decisions by manipulating their inputs to the model to obtain better outcomes and maximize some utility. We consider a multi-agent setting where the goal is to identify the "worst offenders:" agents that are gaming most aggressively. However, identifying such agents is difficult without being able to evaluate their utility function. Thus, we introduce a framework featuring a gaming deterrence parameter, a scalar that quantifies an agent's (un)willingness to game. We show that this gaming parameter is only partially identifiable. By recasting the problem as a causal effect estimation problem where different agents represent different "treatments," we prove that a ranking of all agents by their gaming parameters is identifiable. We present empirical results in a synthetic data study validating the usage of causal effect estimation for gaming detection and show in a case study of diagnosis coding behavior in the U.S. that our approach highlights features associated with gaming.